60 research outputs found

    Towards a GNU/Linux IEEE 802.21 Implementation

    Get PDF
    Abstract-Multiaccess mobile devices and overlapping wireless network deployments have emerged as a next generation network fixture. To make the most of all available networks, mobile devices should be capable of handing over between heterogeneous networks seamlessly and automatically. At the same time, operators should be able to steer network attachment based on their criteria. Although several cross layer mechanisms have been proposed in recent years, only the Media Independent Handover (MIH) Services framework has advanced in any of the established standardization bodies. This paper presents a blueprint for a GNU/Linux implementation of IEEE 802.21. We review the salient points of the standard, introduce our software implementation architecture, detail information gathering in GNU/Linux, and show how our prototype implementation can be used in practice. In contrast with prior published work, this paper presents a real IEEE 802.21 implementation, not an abstracted or reduced MIH-like framework, tested and empirically evaluated over real heterogeneous networks

    Network-assisted Smart Access Point Selection for Pervasive Real-time mHealth Applications

    Get PDF
    AbstractDue to the fast evolution of wireless access networks and high-performance mobile devices together with the spreading of wearable medical sensors, electronic healthcare (eHealth) services have recently started to receive more and more attention, especially in the mobile Health (mHealth) domain. The vast majority of mHealth services require strict medical level Quality of Service (QoS) and Quality of Experience (QoE) provision. Emergency use-cases, remote patient monitoring, tele-consultation and guided surgical intervention require real-time communication and appropriate connection quality. The increasing significance of different overlapping wireless accesses makes possible to provide the required network resources for ubiquitous and pervasive mHealth applications. Aiming to support such use-cases in a heterogeneous network environment, we propose a network-assisted intelligent access point selection scheme for ubiquitous applications of Future Internet architectures focusing on real-time mobile telemedicine services. Our solution is able to discover nearby base stations that cover the current location of the mobile device efficiently and to trigger heterogeneous handovers based on the state and quality of the current access network. The solution is empirically evaluated in Wi-Fi networks used by real-life Android mobile devices and we observed that the scheme can improve the quality of mHealth applications and enhance traffic load balancing capabilities of wireless architectures

    Towards a GNU/Linux IEEE 802.21 Implementation

    Get PDF
    Abstract-Multiaccess mobile devices and overlapping wireless network deployments have emerged as a next generation network fixture. To make the most of all available networks, mobile devices should be capable of handing over between heterogeneous networks seamlessly and automatically. At the same time, operators should be able to steer network attachment based on their criteria. Although several cross layer mechanisms have been proposed in recent years, only the Media Independent Handover (MIH) Services framework has advanced in any of the established standardization bodies. This paper presents a blueprint for a GNU/Linux implementation of IEEE 802.21. We review the salient points of the standard, introduce our software implementation architecture, detail information gathering in GNU/Linux, and show how our prototype implementation can be used in practice. In contrast with prior published work, this paper presents a real IEEE 802.21 implementation, not an abstracted or reduced MIH-like framework, tested and empirically evaluated over real heterogeneous networks

    Road Based Mobility with Network Information Services

    Get PDF
    AbstractIncreasing traffic demand and mobility pose many challenges for wireless networks. Lack of sufficient wireless resources and attempts to fix the problem by equipping networks with more small cell base stations challenge mobility managers. Network information services have been widely cited to help mobile users and networks cope with increasingly dense heterogeneous network environment. In this paper, an information service enhanced with information about base station coverage areas and expected driving routes of end systems are used as basis to improve mobility. Especially, emergency and other high-priority vehicles with pre-known driving routes could benefit from the proactive selection of base stations and their configuration to guarantee quality of service throughout the traversed path. The results indicate that the demanded quality is likely not met when networks suffer from congestion. Moreover, cell selection based on the known route can decrease the number of handovers even almost by half compared to the traditional algorithm using signal strength measurements as basis for the handover target selection
    corecore